BIG DATA INMOBILIARIO. Gestión empresarial de la información. Business Intelligence. Data Mining.
¿Cómo ha transformado el Big Data el sector inmobiliario?
1. Lo más importante está por venir.
La implementación de Big Data en el campo de bienes inmuebles es probable que sea lenta. Sin embargo, muchas empresas inmobiliarias y empresas de desarrollo de software inmobiliario ya están aprovechando los beneficios de esta tecnología para mejorar la eficiencia de los agentes inmobiliarios, simplificar el proceso de búsqueda de viviendas para los clientes y eliminar los costes innecesarios en el desarrollo.
El universo digital se está expandiendo. En 2012 la informática entró en la era Zettabyte. Las redes sociales, dispositivos móviles, datos de dispositivos portátiles, información de negocios son solo algunos tipos de fuentes que pueden generar enormes cantidades de datos. El pronóstico para el volumen de datos creados en todo el mundo muestra que en 2025 alcanzaremos 163 zettabytes. En comparación, la cantidad total de información digital creada por la humanidad en 2009 fue la mitad de un zettabyte. Si ya le sorprende el tamaño de la cantidad de información que se procesa, este es otro hecho interesante. Hoy en día, solo se procesa el 0,5% de todos los datos disponibles. Por eso, lo más importante está por venir.
2. Un gramo de "oro" de toneladas de "mineral" digital (data mining).
Sin embargo, las tecnologías de Big Data no tienen tanto que ver con el volumen, sino con los enfoques, las herramientas y los métodos de procesamiento de datos que ayudan a extraer un gramo de "oro" de toneladas de "mineral" digital (data mining).
Durante la última década, las tecnologías de innovación han reformado casi todas las áreas de las actividades de las inmobiliarias, ya sea construyendo un modelo de negocio, utilizando recursos humanos u optimizando los costes.
3. La tasación inmobiliaria no se entiende sin el Big Data.
Por ejemplo, cualquier inmueble, como propiedad tangible, tiene su valor en el mercado inmobiliario. Es útil saber su precio al realizar cualquier transacción. Como regla general, la evaluación es realizada por expertos tasadores. El Big Data inmobiliario ha realizado ajustes a la situación actual.
Ya hay muchos servicios que hacen una evaluación de la propiedad inmobiliaria aportando una gran cantidad de parámetros. Por ejemplo, a principios de este siglo, el portal Zillow combinó 180 periódicos locales con anuncios de compra y venta en su plataforma, y hoy ofrece un programa llamado Zestimate que valora el precio de venta de una vivienda y la renta de su alquiler.
4. Big Data en la publicidad y marketing inmobiliario.
Una de las tendencias tecnológicas inmobiliarias más recientes es el uso del Big Data en la publicidad y marketing inmobiliario. Casi el 90% de los compradores de viviendas buscan su casa en internet. El portal sabe exactamente qué inmueble está buscando. Cuando un cliente potencial va a una página web elige una búsqueda de parámetros bastante específicos. Gracias al análisis de datos los especialistas en marketing inmobiliario podrán hacerse con los datos de preferencia, la edad, etc.
Dichos datos brindan la oportunidad de hacer un anuncio más personalizado. Por ejemplo, gracias a los algoritmos de análisis de datos, la plataforma Streeteasy de Zillow, un servicio de alquiler de apartamentos en Nueva York, conoce perfectamente a su público y crea campañas publicitarias ingeniosas para todos aquellos que buscan un lugar para vivir en Nueva York.
5. Mejora en la toma de decisiones sobre la compra de bienes inmuebles.
¿Qué suele ver un cliente potencial cuando busca una vivienda para alquilar o comprar? El usuario solo ve la dirección y algunas fotos, mientras que otros datos importantes permanecen ocultos.
Los filtros avanzados de búsqueda de propiedades y el descubrimiento de información relevante del hogar requieren el procesamiento de una gran cantidad de datos. El portal Trulia brinda la oportunidad de evaluar un apartamento o una casa en términos de una gran cantidad de parámetros. Puede calcular el tiempo para ir al trabajo, dependiendo del tipo de transporte que usa, el promedio de edad de los vecinos, averiguar la cantidad y los tipos de delitos en el área, etc.
6. Detección de zonas ideales para la promoción inmobiliaria.
La ubicación puede considerarse el elemento más importante. El Big Data de bienes inmuebles ayuda a elegir la ubicación óptima teniendo en cuenta su propósito, por ejemplo dónde construir un centro comercial para atraer a más clientes y cómo ubicar un centro de negocios para facilitar el trabajo de los empleados.
Por ejemplo, Deepblocks aplica inteligencia artificial para analizar grandes volúmenes de datos de proyectos inmobiliarios. El proceso de análisis predictivo de bienes inmuebles necesita unos minutos, mientras que anteriormente requería de 3 a 6 meses de trabajo minucioso por parte de muchos expertos en el mercado inmobiliario.
7. Inversión inmobiliaria con riesgo cero.
El análisis de Big Data ofrece una imagen clara de cómo invertir y dónde comprar una propiedad de acuerdo con los conjuntos de datos históricos. Antes invertir en bienes inmuebles era un negocio arriesgado. Pero ahora, con la tecnología del Big Data, a los inversores les resulta muy atractivo conocer las perspectivas de los activos que compran en términos de variables demográficas como el suministro de agua, electricidad, tráfico, otros servicios y servicios públicos.
El Big Data ayuda a enmarcar los informes financieros y facilita que los gerentes de carteras y los inversores tomen mejores decisiones al invertir sus fondos.
Dado que la mayoría de las transacciones de fondos se realizan por medios digitales, se debe tener cuidado para evitar cualquier actividad engañosa. Por lo tanto, el Big Data habilita los controles y los puntos de precaución al realizar actividades de transacción de fondos.
8. Internet de las cosas para mejorar la eficiencia y la rentabilidad.
El internet de las cosas (Internet of Things (IoT)) está asociado con la tecnología del Big Data que ayuda a monitorear la propiedad o el edificio. Ayuda a evaluar las mejoras necesarias para alcanzar su eficacia.
9. Planificación de seguros y análisis del clima
De acuerdo con los datos históricos de huracanes y condiciones climáticas catastróficas, el Big Data analiza las restricciones geográficas y evalúa la propiedad a fin de asegurarla.
Estos son los factores clave en función de los cuales Big Data encuentra la solución en el negocio de inversión en bienes inmuebles.
Estos son algunos de los ejemplos de Big Data que están interrumpiendo en el negocio inmobiliario:
Bowery
Facilita al comprador aspectos clave sobre cada aspecto de la valoración de la propiedad. Ayuda a los profesionales de bienes inmuebles a simplificar el proceso de evaluación que consume tiempo.
Enertiv
Transforma en tiempo real el conjunto masivo de datos de construcción en valor de activos a través de la tecnología IoT como su principal fortaleza.
Coldwell Banker
Coldwell Banker marca su presencia al equipar al equipo de ventas con una aplicación completa para rastrear al comprador en términos de sus intereses y requisitos.
CrediFi
Como su nombre lo indica, se concentran en los datos cruciales para las evaluaciones financieras en la industria de bienes inmuebles comerciales. También ayuda a gestionar un préstamo.
VTS
VTS destaca en la usabilidad de los datos. Se realiza reuniendo los datos cruciales, modificándolos en una fuente de información y, finalmente, convirtiéndolos en un producto accesible para cualquier persona del equipo de la empresa en cualquier tipo de dispositivo.
Jones Lang LaSalle
JLL ayuda a los agentes inmobiliarios aportando datos e información importantes sobre ubicaciones o el tipo de propiedad que están vendiendo. JLL recopila todos los datos y los hace accesibles para que puedan ahorrar su tiempo en lugar de consultar.
Xceligent
Ayuda en el proceso de compra orientado a la investigación. Se unifica la información del comprador, la investigación de arrendatarios y tendencias recientes del mercado. Estos datos se recogen para identificar a los compradores potenciales, los actores del mercado real.
Pero todo esto es sólo el principio, lo más importante del Big Data inmobiliario está por venir.
PDF de la guía profesional completa, con modelos, casos prácticos y checklists listos para usar.